Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Sci Total Environ ; 893: 164766, 2023 Oct 01.
Article in English | MEDLINE | ID: covidwho-20238295

ABSTRACT

Wastewater-based epidemiology (WBE) is a promising approach for monitoring the spread of SARS-CoV-2 within communities. Although qPCR-based WBE is powerful in that it allows quick and highly sensitive detection of this virus, it can provide limited information about which variants are responsible for the overall increase or decrease of this virus in sewage, and this hinders accurate risk assessments. To resolve this problem, we developed a next generation sequencing (NGS)-based method to determine the identity and composition of individual SARS-CoV-2 variants in wastewater samples. Combination and optimization of targeted amplicon-sequencing and nested PCR allowed detection of each variant with sensitivity comparable to that of qPCR. In addition, by targeting the receptor binding domain (RBD) of the S protein, which has mutations informative for variant classification, we could discriminate most variants of concern (VOC) and even sublineages of Omicron (BA.1, BA.2, BA.4/5, BA.2.75, BQ.1.1 and XBB.1). Focusing on a limited domain has a benefit of decreasing the sequencing reads. We applied this method to wastewater samples collected from a wastewater treatment plant in Kyoto city throughout 13 months (from January 2021 to February 2022) and successfully identified lineages of wild-type, alpha, delta, omicron BA.1 and BA.2 as well as their compositions in the samples. The transition of these variants was in good agreement with the epidemic situation reported in Kyoto city during that period based on clinical testing. These data indicate that our NGS-based method is useful for detecting and tracking emerging variants of SARS-CoV-2 in sewage samples. Coupled with the advantages of WBE, this method has the potential to serve as an efficient and low cost means for the community risk assessment of SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , SARS-CoV-2/genetics , Wastewater , Sewage
2.
Sci Total Environ ; 881: 163454, 2023 Jul 10.
Article in English | MEDLINE | ID: covidwho-2296293

ABSTRACT

Wastewater-based epidemiology (WBE) is a promising tool to efficiently monitor COVID-19 prevalence in a community. For WBE community surveillance, automation of the viral RNA detection process is ideal. In the present study, we achieved near full-automation of a previously established method, COPMAN (COagulation and Proteolysis method using MAgnetic beads for detection of Nucleic acids in wastewater), which was then applied to detect SARS-CoV-2 in wastewater for half a year. The automation line employed the Maholo LabDroid and an automated-pipetting device to achieve a high-throughput sample-processing capability of 576 samples per week. SARS-CoV-2 RNA was quantified with the automated COPMAN using samples collected from two wastewater treatment plants in the Sagami River basin in Japan between 1 November 2021 and 24 May 2022, when the numbers of daily reported COVID-19 cases ranged from 0 to 130.3 per 100,000 inhabitants. The automated COPMAN detected SARS-CoV-2 RNA from 81 out of 132 samples at concentrations of up to 2.8 × 105 copies/L. These concentrations showed direct correlations with subsequently reported clinical cases (5-13 days later), as determined by Pearson's and Spearman's cross-correlation analyses. To compare the results, we also conducted testing with the EPISENS-S (Efficient and Practical virus Identification System with ENhanced Sensitivity for Solids, Ando et al., 2022), a previously reported detection method. SARS-CoV-2 RNA detected with EPISENS-S correlated with clinical cases only when using Spearman's method. Our automated COPMAN was shown to be an efficient method for timely and large-scale monitoring of viral RNA, making WBE more feasible for community surveillance.


Subject(s)
COVID-19 , RNA, Viral , Humans , Wastewater , SARS-CoV-2/genetics , COVID-19/diagnosis , Automation
3.
Sci Total Environ ; 880: 162694, 2023 Jul 01.
Article in English | MEDLINE | ID: covidwho-2249570

ABSTRACT

Since the COVID-19 pandemic, a decrease in the prevalence of Influenza A virus (IAV) and respiratory syncytial virus (RSV) has been suggested by clinical surveillance. However, there may be potential biases in obtaining an accurate overview of infectious diseases in a community. To elucidate the impact of the COVID-19 on the prevalence of IAV and RSV, we quantified IAV and RSV RNA in wastewater collected from three wastewater treatment plants (WWTPs) in Sapporo, Japan, between October 2018 and January 2023, using highly sensitive EPISENS™ method. From October 2018 to April 2020, the IAV M gene concentrations were positively correlated with the confirmed cases in the corresponding area (Spearman's r = 0.61). Subtype-specific HA genes of IAV were also detected, and their concentrations showed trends that were consistent with clinically reported cases. RSV A and B serotypes were also detected in wastewater, and their concentrations were positively correlated with the confirmed clinical cases (Spearman's r = 0.36-0.52). The detection ratios of IAV and RSV in wastewater decreased from 66.7 % (22/33) and 42.4 % (14/33) to 4.56 % (12/263) and 32.7 % (86/263), respectively in the city after the COVID-19 prevalence. The present study demonstrates the potential usefulness of wastewater-based epidemiology combined with the preservation of wastewater (wastewater banking) as a tool for better management of respiratory viral diseases.


Subject(s)
COVID-19 , Influenza A virus , Influenza, Human , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Humans , Influenza, Human/epidemiology , Respiratory Syncytial Virus Infections/epidemiology , Respiratory Syncytial Virus Infections/genetics , Wastewater-Based Epidemiological Monitoring , Pandemics , Prevalence , Wastewater , COVID-19/epidemiology , Respiratory Syncytial Virus, Human/genetics
4.
Sci Total Environ ; 856(Pt 1): 158966, 2023 Jan 15.
Article in English | MEDLINE | ID: covidwho-2042126

ABSTRACT

During the coronavirus disease 2019 (COVID-19) pandemic, wastewater-based epidemiology (WBE) attracted attention as an objective and comprehensive indicator of community infection that does not require individual inspection. Although several severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) detection methods from wastewater have been developed, there are obstacles to their social implementation. In this study, we developed the COPMAN (Coagulation and Proteolysis method using Magnetic beads for detection of Nucleic acids in wastewater), an automatable method that can concentrate and detect multiple types of viruses from a limited volume (∼10 mL) of wastewater. The COPMAN consists of a high basicity polyaluminum chloride (PAC) coagulation process, magnetic bead-based RNA purification, and RT-preamplification, followed by qPCR. A series of enzymes exhibiting a high tolerance to PCR inhibitors derived from wastewater was identified and employed in the molecular detection steps in the COPMAN. We compared the detectability of viral RNA from 10-mL samples of virus-spiked (heat-inactivated SARS-CoV-2 and intact RSV) or unspiked wastewater by the COPMAN and other methods (PEG-qPCR, UF-qPCR, and EPISENS-S). The COPMAN was the most efficient for detecting spiked viruses from wastewater, detecting the highest level of pepper mild mottle virus (PMMoV), a typical intrinsic virus in human stool, from wastewater samples. The COPMAN also successfully detected indigenous SARS-CoV-2 RNA from 12 samples of wastewater at concentrations of 2.2 × 104 to 5.4 × 105 copies/L, during initial stages of an infection wave in the right and the left bank of the Sagami River in Japan (0.65 to 11.45 daily reported cases per 100,000 people). These results indicate that the COPMAN is suitable for detection of multiple pathogens from small volume of wastewater in automated stations.


Subject(s)
COVID-19 , Nucleic Acids , Viruses , Humans , SARS-CoV-2/genetics , RNA, Viral , Wastewater , COVID-19/diagnosis
5.
Journal of Japan Society of Civil Engineers, Ser. G (Environmental Research) ; 77(7):III_191-III_197, 2021.
Article in Japanese | J-STAGE | ID: covidwho-1736656
SELECTION OF CITATIONS
SEARCH DETAIL